This project was an extension of Entrapment. Inspired by circuses and zoos, this project hoped to replicate what’s it like to be entrapped by humans. Originally, we wanted to create a multimedia project that centered around a small cage. The cage that we created gives a false perspection of how much room is in the cage since an inner set of walls close in on the experiencer. As the cages would close, sound would play, kids screaming, photo shutters, and animal noises, and a curtain would block out most of the light. The walls are controlled by a crank on the outside of the cage which is controlled by another person, who has to continually agree to the punishment. This element affects the experiencer on a physiological level since they are left helpless and hoping that the other person won’t hurt them. Unfortunately, we couldn’t get a chance to work on the sound and curtain. We built another quarter scale model, instead of the full scale model, to focus on the mechanism and inner set of walls.
At the end of Entrapment we had a full scale model, but our string mechanism wasn’t working. Our cage has an extra two inches on the top and bottom of the box where the wheels sit. At first we tied strings around the wheels, looped it along a very specific set of dowels, and finally tied it twice on a circular piece in the center. On both the top and bottom of the cage there were seven dowels: one at each corner right next to a wheel, one between the two wheels on each side, and one in the center to hold the circular piece. The strings looped and were tied directly across from each other in the circular piece, so that turning the circular piece in the opposite direction would get the walls to go back to their original position. At first, there were two circular pieces on both the top and bottom of the cage. This was problematic because we could not move the top and bottom wheels at the same time. In the next iteration, we kept one circular piece on the top of the cage. The strings were stilled looped around the same dowels, expect next we brought the bottom strings to the top of the cage. This mechanism was too hard to control. As soon as I tied the bottom strings to the circular piece, I realized a string fell off one of it’s dowels. Also the strings had to be feed back down to the bottom, so that they would loop.
We decided to switch over to using gears and linkages instead of strings because strings couldn’t be used in a full scale model. We decided to have wall extensions with teeth that would move when a gear turned in between them. Our design had four wall extensions in total, two from each wall, and would need two small gears. On top of these small gears would be two big gears that would turn together, which were crucial for the crank. We kept all the wheels on the bottom of the cage and had the gears on the top. The big gears were our only constraint because they needed to touch and would have the same center as the small gears. We changed our notching with only one notch instead of three because of the wall extensions. At first, I thought we would drill a hole for the crank in the big gear, but instead we laser cut like layers of wood to hold the crank in place on top of the big gear. We originally 3D printed our crank for a circular dowel, but then we realized the circular dowel would turn instead of the gears. We decided to use a square wooden dowel that wouldn’t turn.
In our first iteration with the wall extensions, or linear gears, we just hot glued the linear gears to the walls. We decided to add some triangular support to these pieces. We designed three layers: one a triangular attachment that notched into a short piece, we called the tongue, and the tongue would be screwed into the linear gears.
We even designed a logo to use for our cage, Entrap’t, but we ran out of time to incorporate our logo. Our logo had an elephant, the animal behind our project, and decided on Entrap’t as our name. The apostrophe was to add emphasis to the t and we switched the d out with a t because everyone says their ds as ts.
Assembling our final iteration of the cage was difficult because of the different materials. We decided to laser cut the gears out of acrylic because it would help eliminate friction, while he walls of our cage were laser cut out of thin wood. The acrylic was much thinner than we were expecting, so we decided to print most of the gears out of thick wood instead even though they don’t make as good gears. The linear gears remained acrylic, but we added two layers instead of just one layer. We wanted to add a top piece to our box and decided on acrylic, so we would see the gears moving. Throughout this four week journey there were lots of little annoyances, but they were all worth it to get those walls moving!! Even though we still had some troque issues with the bottom wheels, probably because our thin wood was warped, we’re so proud of what we accomplished.