Final

Isabella Julian

“Air Boston” was an urban design studio with the challenge of improving Boston’s Rapid Transit (MBTA) Green Line by augmenting it with a cable car system. Isabella, Matt, and Max worked as a team and began by assessing the key problems with the Green Line, which runs above ground for a significant portion of its four routes. A key cause of its congestion and inefficiency is because the MBTA (“T”) system, and in particular the Green Line,  requires it's passengers to go all the way inbound to the center of Boston in order to transfer to other lines. Furthermore, the Green Line is often slow and unreliable because of above-ground traffic and frequent break-downs due to weather conditions and the aging rolling stock.

Our approach to this challenge is creating a cable car network that connects all the current lines in a ring formation, making it possible to transfer among the different lines outside of the center. This way it is significantly less expensive than replacing the entire Green Line. For the next several days, the team researched existing cable car systems. From their research, the team decided to use a gondola system rather than a tricable or reversible system, because gondolas are generally smaller, cheaper, and detachable, which would allow for more cars running at greater frequency, to keep a constant flow and alleviate congestion.

Once they had planned the general configuration of their new “Air T” system, each team member took on a specific job. Isabella took on logistics— how many cars, how many people per car, and costing. She gathered and organized data on capacity, costs and time savings, prototyped a logo design, and laid out an informational poster.

Matt was in charge of maps—where the stations would be located and the design of the final T map. Matt figured out which current T stops on each line would be most appropriate to locate the new Air T stops. He created a map using Illustrator, overlaying the new Air T ring onto the existing T map.

Max took on the design and 3-D modelling of the stations and support towers. He chose an hourglass shape for the station design and created a floor plan and 3-D model using Rhinoceros (“Rhino” is a 3-D modelling software). His inspiration for the towers was the Emirates Air Line (also known as the Thames Cable Car) in London, in which the support towers are an elegant twisted design combining trusses and curvilinear surfaces that are both light and strong. Max rendered the station and tower design in V-Ray (a rendering software) but encountered some problems which made the renders low quality.