Process

Jules Gouvin-Moffat and 2 OthersSofia Canale-Parola
Jake Barton

Originally, our plan was to redesign the current stress ball in order to distract from anxiety (social and otherwise). Both of my partners and myself deal with severe anxiety every day. We started our first day talking about our current ways of distracting from anxiety and our past methods. We gave each other lots of inspiration for various designs that would have succeeded where our previous, easily-broken stress balls did not. The idea we liked best was a two-part bracelet modeled after spinning rings, with a rubber pad extending from the bracelet positioned in the palm of the user for them to squeeze and fidget with as needed. We also knew we wanted to be discreet. Frequently, those with anxiety look perfectly fine on the outside, even if we’re collapsing on the inside. I kept this concept with me throughout our entire design process.

Soon after coming up with this idea, we moved away from form to focus on concept. Our coaches helped us develop the idea of going beyond a simple fidget toy to create something that could convert our nervous energy into something both productive to others and/or ourselves. Then we had another brainstorm session, and made two lists of ideas: one showing all the ways we physically express anxiety, and one showing all the ways we combat anxiety as well as plans for combating it and contributing something useful.

We decided to work on a device specifically helping repetitive hand motion/hand twitching. We are, unfortunately, extremely intimate with this particular futile coping mechanism, but it definitely helped us on this project because we know what works and what doesn’t.

Almost immediately after, we came up with our next big plan: a fashionable wrist brace that uses acupressure to soothe and distract from anxiety. Even though we had a ton of cool ideas from our brainstorm, most of them existed already, and we needed and wanted to go further than that.

We talked to a massage therapist who told us all the pressure points he focuses on for acupressure that relieve anxiety. At that point, we were still stuck on the spinner bracelet idea, so we wanted to slot in a smaller version of spinners over all the pressure points. To actually start the acupressure, the user would have had to twist the bracelets.

Afterwards, we got a closer look at some 3D-printed prosthetics that other students had made. We were inspired by this model, and so chose to model the wrist brace out of strategically placed strips of plastic with elegant designs-similar to the prosthetic arms, except better-looking and comfortable. At this point we also started to think more about what would actually trigger the acupressure. The very first idea was to have a small knob with a raised surface that the user could simply press into the pressure point (at no injury to themselves, obviously). That idea was scrapped quickly in favor of a small plastic cylinder with a ball joint at one end and a rounded edge at the other. When the user would feel anxious and the need to fidget, they could easily flip the cylinder from its mostly horizontal resting position to massage-not just press into-a pressure point. The point of the ball joint was to allow them to turn it 360 degrees; however, once I modeled that it became clear this particular ball joint was actually quite constricting. To fix this, I sketched some plans and simplified a lot. The new version was simply a cylinder with a slot going all the way around, about halfway up.

For the wrist brace, we soon realized that the strips of plastic would be really clunky and unappealing. Jake and Sofia worked on two different versions that incorporated a more flexible style, using the Voronoi pattern (a spiderweb-type creation). This would use less material and also provide ready-made holes to place the fidgetors. Ultimately we went for Sofia’s model because it was generally smoother.

Following these many design shifts, we finally got a final version of the fidgetor! We had thought my third one would be the final, but we was wrong, as it was too small, not effective, and difficult to hold. The fourth and final one was roughly double the size of the previous version, and actually worked in relieving anxiety. There were three physical iterations, due to repeated misprints. Once the fidgetor was accomplished, we had to reconsider how to connect to the brace. We decided to make a rubber blob shape, screwed in an area contoured for it in the brace, with a hole for the fidgetor to fit through. 

At the same time, we also started to redesign the brace. The brace became a bracelet with an interesting shape molded and extended out of the top, sized so that it would fit all the pressure points. Our first model was (in a pixel-y style) a physical representation of anxiety. Our group decided we liked the second one more, but unfortunately the curves were too complicated to be 3D printed. So we redesigned it to make a a less complex version, that still incorporated the essence of anxiety, as it were.

We also made 8 digital versions and 6 physical versions of the piece connecting the fidgetor to the brace. The sizing kept getting messed up, which was why there were so many versions. This was largely caused by the overwhelming amount of files we had, as well as multiple miscommunications. With some extra help from a coach, the eighth version was perfect.

Once the drama of the attachment piece was finished, we went back to work on finishing our brace. The only truly difficult thing about modeling it was accurately placing the recesses for both Jake’s piece and the pressure points. After all the main portions printed out (the fidgetors, the brace, and the attachments) assembling was a relative breeze.