Our goal was to create an efficient display for air plants. Our solution was to create a user friendly display, that mimics the properties of phototropism.
Our display allows for the airplants to move in different positions, to receive maximum solar exposure. We got most of our inspiration simply from other airplant displays. We liked how it had an appeal to most people, but we wanted to add our own creative twist, and give it some type of purpose. We decided to use both light sensors and distance sensors, to allow the plants to move up and down, depending on where the sunlight was. We used 3 motors, 3 distance sensors, and 6 light sensors. There is a light sensor at the top and bottom of each plant. We developed our model a lot throughout the process. We started out with thinking that the devices primary purpose was going to be to water the plants. We then realized we wanted to include the properties of phototropism, so decided to go with the light idea. We also thought we were gonna have 5 plants, and just light sensors, but decided it would be much easier and would work better if we used 3 plants, and distance sensors as well rather than just light sensors. We had many challenges. One big challenge was getting the arduino to work the way we wanted to. It took a really long time to get one motor to work, so once we got one to work, we didnt have much time to make the others work. It was also challenging to create something to hold the plants with. At first we tried twisting wire, but it was messy and did not look clean enough for the final version. We then moved on to piano wire. We tried two different types of glue which both wouldn't work. We ended up using hot glue, and although it ultimetly took a very long time, it worked out well and looked clean and polished. We just had to modify the shape a bit.
We started modeling our design by creating a small, cardboard prototype. We used wire to hold the plants, and we created a way for you to move to plants up and down manually, just to get the general idea of how it would work. The second model was much more developed. We made this model out of cardboard as well, but full size. We also added a top compartment for arduino storage that you could access. This was a critical change. We also decided where the light sensors would go, where the distance sensors would go, and how big we wanted the wire pieces to be. Lastly, we made our final model. When creating it in rhino, we made some small changes. We added more notches, giving it a cleaner look. We also added in holes for the distance sensors at the bottom, and holes for the light sensors along the top and bottom. We also decided to use piano wire instead of regular wire. This ended up looking a lot cleaner.