Process Post

Tali Bers and Samantha Mills
1 / 19

The Problem: Often times dog owners find it a little gross and unappealing to pick up after their dogs. Using a plastic bag forces one to get very close to the poop, some people don’t like that feeling and might not even pick up after their dog. Dog waste makes streets unpleasant.

The Solution: We designed a disposable pooper scooper that pops onto a 3D printed piece with a three foot handle.

Detailed Solution: The pooper scooper uses a paper beak to pick up dog waste. It closes with a push of a button that turns on a solenoid to close the beak. THe three foot handle enables the user to be a comfortable distance from the waste.

Main Story or Theme: Our studio focused on creating paper designs that could be printed and easily assembled. After playing around with paper folds for about three days, we decided to use our folds to build a gripper. Next we brainstormed several different fields that could use a gripper and finally, we decided that our design would be disposable.

Mechanics: Our project is based around a three layer paper beak. The beak folds together from paper and is easily put together after being laser cut. It is a combination of three layers: bristol board, bristol board with adhesive and mylar with adhesive to give flexibility. We designed a 3D printed piece that holds the beak, battery, rod, and solenoid in place. At the top of the wooden rod is a switch that has wires running down to the battery and solenoid to make  circuit where when the switch is flipped the solenoid pushes out, closing the beak. The beak has a built in slot to easily pop onto the 3D printed piece.


Iterations:

We started out by making an origami beak by folding paper and realizing how it went together. We tried putting a four bar linkage directly behind the beak to make it rotate up and down on the Y axis, which worked well. Then we realized that it could be closed by just two fingers on each corner, so we tried to make two separate four bar linkages to act as the fingers. We got the the beak to close but it was hard to control and it didn’t rotate that well along the X axis like we had hoped. By looking at the origami beak, we designed an outline in Rhino to later laser cut. We cut out two beaks, one iteration had a horizontal fold and the second one had a vertical fold (and hinges).     

We designed two grounds, one for the beak with the horizontal fold and one for the beak with the horizontal fold. One ground was for the beak where as it closed, the sides would come together. The beak was vertically between the two pieces of wood and had two servos that were behind it with plastic wire attached to each. The wire pulled the back sides closer together, closing the beak. Each servo was programmed to be controlled by a potentiometer.

The second ground was for the horizontal fold and used one solenoid to close the beak. The beak was pinned into the ground, so the solenoid could hit the precise corner. This design was very easy, only needing three different parts and no programming.

Although the design controlled by servos has more freedom and is able to move and be controlled more precisely, the design with the solenoid is simpler and can be used for a specific problem, it could close with the press of a button. We decided it could be used to pick up dog poop because just using a plastic bag is a bit gross and not good for the environment. We could also have it pop on and off to throw out. It could also be on the wall in city streets so people could use it throw out the paper part and put it back. We decided that the ‘pooper scooper’ idea was most compelling and could maybe turn into something more movable later. We started designing in Fusion 360 a base with a pin and a box for the solenoid on the side. We had a few iterations of perfecting the box and making a holder for a wooden rod, which we ran wires up to a button.