Student Gallery
Enrollment Summer 2019 Bioinfinity (Ages 11-13) Summer 2019 NuVu at MIT (Ages 14-18) Summer 2019 NuVu at MIT Residential Academic Year Program Summer 2019 PreVu 2 Innovation Camp For Educators 2019
About Us What is NuVu Calendar Team + Advisors Partners Blog Press Jobs Contact Us
Nuvu X What is NuVuX Offerings Partners
Reset Password
  • Zoom your way through this Studio by building your own aerial flying machine! Aerial drones, or unmanned robots, are all around us in the form of delivery devices, aerial photography/videography machines, monitoring robots, and crowd control drones. What other innovative flying machines can you imagine? Medical aerial drones that bring much-needed supplies to victims in disaster areas? Storm-chasing aerial machines that help meteorologists understand environmental forces better? Flying machines that monitor and inspect bridges and other structures while offering support to builders on construction sites? What about a flying robotic waiter that delivers food straight to your table? Learn about all the components that make your flyingbot go zoom: motors, batteries, engines, radio signals, wings and propellers, and robotic intelligence!

    In this Studio, students will be constructing an electric flying robot. Students will ride the waves of radio frequency and modulation, and will gain an understanding of how transmitters and receivers communicate. Students will also learn about flight, design, engineering, and robotic intelligence (automaton, remote control, teleoperation, full autonomy). Students will experience the hands-on joy of soldering, programming, building circuits, laser cutting, and 3D printing before applying a custom paint job for the finishing touch. Then it’s off to the final exhibition where the flyingbots will zoom away to save the world!

    Focus Skills/Subjects/Technologies:


      Physics (Electricity, Magnetism)




      Robotics (Arduino)

      Sensors & Actuators

      Digital Fabrication (Laser-cutting, 3d Printing)

      3d Modeling


    • Enrolling students must be between the ages of 11 to 18 (middle and high school students)

  • We succeeded greatly in creating a real version of the Harry Potter Snitch, commonly used in the game of Quidditch. This is because we all wanted to make fiction real. It is because we have seen things in fiction come to life and we feel as if we should make our dreams come true also. So we started brainstorming ideas about how to build the Snitch and drew a rough sketch of what we originally thought it would look like.

  • As we may have mentioned before, our design prompt was that Eric likes frisbee and we thought that it would be fun if we could modify it ever so slightly. We began with the idea that we wanted to raise and lower the frisbee, as well as turn it. We realized that this idea was just turning the frisbee into a ufo, rather than a frisbee. So we started again and this time David gave us a digital compass to work with. After several discussions, whether to use a propeller or a flap to decrease lift on one side of the frisbee, we agreed on the flap idea. And as you can see in the gif, that was our final product.

  • Our idea was to create an ornithopter that could be steered from from a remote control. Ornithopters usually only go in one direction because the flapping of the wings interfere with the steering. We wanted to be able to make an ornithopter that could stop flapping, steer, and start flapping again. The goal of the studio was to create a flying sculpture. Our project fulfils this goal because if we were able to finish it, we would have made it look like a dragonfly. This would have made it into a fun, interactive sculpture.





Summer 2016 Residential