Home
Student Gallery
Enrollment Academic Year Program Fall 2018 PreVu
About Us What is NuVu Calendar Team + Advisors Partners Blog Press Jobs Contact Us
Nuvu X What is NuVuX Offerings Partners
Reset Password

  • You will be creating your presentation on the NuVu Platform.

    Things to do/think about:

    • Your presentation should be located in the Portfolio tab of your project.
    • There should be (1) post titled Process with all of the slides.
    • If needed, you can have (1) post of a video of your project in action.
    • All slides should have a title. You can add titles when editing the post
    • With the exception of the Title slide NO TEXT SHOULD APPEAR ON YOUR SLIDES.
    • Only (1) image per slide. NO GOOGLE DOCS!!!
    • Be sure to add your team members as collaborators and make the (2) posts Public.
    • Only one team member can edit a post at a time!
    • Presentations should be no longer than 3 minutes. PRACTICE!

    1st Post : Process

    Absolutely no more than 8 Slides!

    1 Intention Slide. For build projects, describe the Problem and Solution. For conceptual projects this can be expressed as Intention/Solution. The slide should include the name of the project and a one sentence statement of both the problem and the solution.

    Example:
    Segmented Vehicle
    Problem: Design a vehicle for a mountainous world with difficult terrain to traverse.
    Solution:  A segmented vehicle with a universal joint system handles mountainous terrain by conforming to the landscape.
     
    1  Precedent Slides. One slide to show conceptual idea. One slide to show mechanical or functional idea.
     

    1 Brainstorming Slide. This should be a clean sketch of your initial ideas. If you do not have a nice drawing or lost yours, create one now!

    2 Iteration Slides. These slides should show early prototypes of your design. Focus on big changes. You do not need to show tiny Changes.

    3 Final Slides. These should show clean images of your final project.

    Text:

    In the text section for the process post, write a paragraph introducing the design problem or the main idea and how you are tackling it. Then, describe the main story or theme, mechanics, development, challenges, and other parts of the creative process you experienced. Each iteration should have a paragraph describing how you how you modified the project after receiving feedback.

    1. Design Problem and Solution:

    You should begin with a clear statement of the problem and the solution as both a one sentence description and a short paragraph expanding on the solution.

    Here is an example from the Reaction Shelter project:

    • The Problem: Over 300 natural disasters occur globally every year, displacing 32.5 million people on average.Domestically, 99 federal disaster declarations were on file with FEMA in 2011.
    • The Solution: The Reaction Housing System is a rapid response, short-term housing solution.
    • Detailed Solution: The core sustem components flat pack to provide extremeley efficient storage and transportation. The systems can be deployed within hours of an event without the need for tools or heavy machinery.

    2. Further Ellaboration:

    • Main Story or Theme: describe in further detail the reason for your project and the overall way you are solving that problem
    • Mechanics: Describe how your project works and what it is doing
    • Development: Briefly explain the progression of your project
    • Challenges: Describe technical and design challenges you faced or are still facing. 

    3. Iterations

    Each iteration should have a paragraph describing how you how you modified the project after receiving feedback.

    Here is an example from the Backcountry IV Project:

    • In our second iteration, we redesigned the cylinder so that it actually had two compartments that would screw together. Though there were two compartments, there would be a small piece in between the two that would screw them together, so that they remained the same diameter and size. We designed the piece to fit exactly between the two compartments so that it wouldn’t be visible when the entire piece was together. The part had triangular shaped spaces cutting through it where the IV tube and wires for the technology side of our studio fit. In the upper cylinder, the holes remained for the UV lights, but there was more space underneath for the Arduino. In the bottom compartment, we created a hole in the middle designed to fit the IV reservoir and tubing, and small spaces directly next to the reservoir where the resistors to warm the reservoir sat. This spacing for the pieces worked well, except that the entire reservoir piece took up too much room, so much that all of the compartments didn’t screw together. Underneath the inner part designed to hold the reservoir and resistors, there was room underneath to hold the arm cuff and the excess tubing. We also designed two caps to close together the whole piece. Except for the fact that it was a bit sharp and there some minor fitting issues, the caps worked well and made the entire piece compact and portable. For the next iteration, which was the final one, we made a few critical changes.

    2nd Post: Video

    Upoload a short video showing your project in action. Do not count on your project working as you expect during the presentation.

     

     

  • Many people have careers that place them on the brink of life and death. While there are many technologies out there to help people who are placed in those situations, there are still many advancements that need to be made. For the brainstorming process, we brainstormed many different scenarios and careers that place people on the brink of life. Among these careers are deep sea divers, firefighters, high altitude mountaineers, and back-country skiers. People who take part in these activities experience hypothermia, low oxygen levels, and frostbite, among other issues. While doing research on hypothermia we found that one of the first things that doctors do to treat hypothermia is give them a heated IV. This heated IV allows the patient to raise their body temperature, easing them out of hypothermia. Our group thought that creating a portable heated IV would be great for people who are experiencing hypothermia while high altitude climbing, and once treated with this IV, they will be healthy enough to summit the mountain to seek medical help.

    Originally, we were going to have IV bags that people would carry in their packs. After thinking about that for awhile, we realized that carrying an IV bag would add a bunch of extra weight to a backpack. Most high altitude climbers use Nalgenes, so we decided to use the water from our Nalgene for the IV. The water in the Nalgene will be purified by UV lights. Additionally, in the compartment there will be a salt tab that will mix with the water to create the saline solution that is normally found in an IV bag.

    The first iteration of the portable heated IV screwed onto the top of the water bottle. This cap was comprised of 6 holes for the UV lights, with a hole in the middle for the IV. We liked the shape of the compartment, and it screwed on and off of the Nalgene cap easily, so we continued off that idea for our next iteration. However, the piece wasn’t long enough, so we decided to lengthen it. We knew before creating the piece that it would not hold the cuff and the necessary technology involved in our piece, but we created it to test the shape and idea.

    In our second iteration, we redesigned the cylinder so that it actually had two compartments that would screw together. Though there were two compartments, there would be a small piece in between the two that would screw them together, so that they remained the same diameter and size. We designed the piece to fit exactly between the two compartments so that it wouldn’t be visible when the entire piece was together. The part had triangular shaped spaces cutting through it where the IV tube and wires for the technology side of our studio fit. In the upper cylinder, the holes remained for the UV lights, but there was more space underneath for the Arduino. In the bottom compartment, we created a hole in the middle designed to fit the IV reservoir and tubing, and small spaces directly next to the reservoir where the resistors to warm the reservoir sat. This spacing for the pieces worked well, except that the entire reservoir piece took up too much room, so much that all of the compartments didn’t screw together. Underneath the inner part designed to hold the reservoir and resistors, there was room underneath to hold the arm cuff and the excess tubing. We also designed two caps to close together the whole piece. Except for the fact that it was a bit sharp and there some minor fitting issues, the caps worked well and made the entire piece compact and portable. For the next iteration, which was the final one, we made a few critical changes.

        The next iteration was the design of the arm cuff. The purpose of the arm cuff is to hold and stabilize the needle, making it easier to slide and secure in the user’s arm. However, the cuff couldn’t be too big, because otherwise it wouldn’t fit in our bottom compartment, defeating the purpose of keeping all the pieces in one place. On Fusion, we created the piece so that it rounded to sit on the user’s forearm comfortably. There were two cutouts on the ends to connect with the Velcro strapping that would allow for adjustability and security. The top of the cuff had a track allowing the needle holder to run back and forth. The needle holder was just a semi circle piece, with the length across being the diameter of the needle holder on the tubing, so that the needle holder would just pop into place on the cuff. There were a few issues with the piece, though. The two cutouts on the ends were thin, so they weren’t strong enough to hold the strapping - one of the pieces actually broke. Another problem was the semi circle needle holder on the cuff didn’t hold the actual casing around the needle, so it fit it but didn’t keep it in place. Also, the body of the cuff wasn’t long enough to fit comfortably. For our final iteration, we had to change these issues.

    The final iteration of the container is pretty similar to the previous, we only changed a few things. The major change that we made was to the canister. We moved the IV holder to the side so that the tube and electronics can go out the side instead of through the middle. The second compartment that we added was for the battery pack. Adding this battery pack allows us to use a bigger battery, and still fit everything within the container. The final thing that we made space for in the container is the cuff. Secondly, we reprinted the connector screw. While keeping the hole consistent throughout, we made the reel slits only halfway through. We kept the slits so that we can twist the screw, but we made part of it solid so that the user can not see the arduino and chords while in use.

     

    Biometrics Process

    This process began by deciding what sensors and devices we wanted to use in order to perform the most beneficial functions to the portable IV.  The first and most obvious function was a heating device due to the extremely cold temperatures on mountains that the user would be hiking in.  This heating device would be used to heat the IV to the optimal heat between 104 and 106 degrees Fahrenheit.  The idea of this heating device is that is using the heat that resistors generate in order to heat the IV drip to the optimal temperature.  This process began by simply hooking a 3.9 ohm resistor up to the Arduino and attaching the resistor up to the temperature sensor in order to read the heat that the resistor was giving off.  Initially there was not enough power to make the resistor heat up to the optimal heat.  Many alterations were then made over a span of three days.  The result was four resistors saudered in series hooked up to an 11 volt lithium polymer battery. This battery provided the correct amount of power in order to heat the resistors up to the correct temperature.  The four resistors could now be wrapped around the temperature sensor in order to insulate the increased heat.  This allowed for the temperature to increase faster.  The arduino was then programmed to cool down if the temperature exceeded 106 degrees and heat up if the temperature fell below 102 degrees the resistors would heat up again.  After this was successfully programmed the sketch was uploaded to an Arduino Micro, and the necessary wires were saudered into a perf board in order to minimize the size of the device in order for the device to fit into the piece.  After this was done, UV lights were attached in series and saudered together in order to fit into the holes in which they are meant to be placed within the piece.  However, the lights should have been attached in parallel rather than in series.  This issue was fixed and the lights worked.

     

  • Remember, all documents related to the brief are found HERE. These include a note from the writing coach and the Composition Reminder Sheet.

    Now that you have created an document that outlines all of the information you want to relate in the Brief, it is time to weave that information together into a strong narrative that ties together the Why, How and What and Who of your project through clear, cogent writing. Tell the story of how your idea was born, developed, and manifested.

    Create 1 post titled “The Brief” in the Writing tab with text that includes the following 2 items, numbered:

    1. A 1-2 sentence project description for your transcript. This will serve as the basis of the Project Description that appears in your transcript. This description should not include the name of the project and should be written in the third person. This was Question 1 in your Outline.
      examples:
      Night Light Blankie: A child's sensory blanket that provides comfort and privacy in the high stress environment of the hospital using weight, textures, and light. The blanket transforms into a mini light up fort over a child’s head.
      Cocoon: a shroud that explores human spirituality and the concept of life after death through the use of repetitive religious iconography. Composed of over 300 pieces of laser cut balsa wood lined with space tape, the icons are arranged using a mathematical strange attractor.
    1. A 1-2 paragraph brief for your project based on the description below. This will be based off the information you put together in your Outline and should focus on style. The NuVu writing coach will give you feedback and you will have the opportunity to revise this text before the final presentation. The primary purpose of The Brief is to explain, entice, and convince the reader that your project is amazing and important. Imagine your project on display in the Museum of Modern Art. The Brief is hanging on the wall next to your work. In 1-2 paragraphs, a viewer should understand what your project is, why it exists, and how you made it, and who it is for. More importantly, the viewer should be interested and care. You will draw them into your project through a compelling narrative.

      Things to think about:
      • Use the information in your Outline. Do not simply put all of the answers together -- you must weave it together into a clear story.
      • The what is a clear statement of the thesis or problem+solution. Your project description for your transcript (#1 above) can be adapted for this purpose.
      • The why explains how your project changes the world. It is the reason your project exists – what social issue is it engaging, who is your project helping, how does the project change the world, and what important social, intellectual, or technical questions does it raise? The scope of the why can vary widely.
      • The how briefly explains what technical prowess, innovative methods, or cool materials you used in your solution.
      • The who explains who will use your design, why they will use it, and in what context.
      • Think of the reader - it is good to imagine that a college admissions officer AND a potential employer in the field of your design should both be able to understand and be excited by the project based on your writing.

    Write in the Third person in an explanatory fashion. Resist using I, WE, OUR, or YOU and focus on describing the work.

    Here is an example from Penelope the Pain-O-Monster:

    Pediatricians and other doctors find it challenging to collect accurate self reported information from children about their level of pain due to lack of communication skills, fear, anxiety, and discomfort. Traditional 1-10 pain scales do not fully address these issues, often leading to uncomfortable children and inaccurate symptom information. Penelope the Pain-O-Monster is a cute plush toy that uses integrated pressure sensors to allow children to express their source and level of pain through play.

    A previous project, The EmoOwl, helped children with autism to express themselves by translating motion into color. Penelope the Pain-O-Monster grew out of the desire to expand children’s health menagerie with a different stuffed animal, one that makes the pain charts patients use to express their pain more interactive and easier for a child to use. Because research has shown that playing with stuffed animals can take children’s mind off pain, an additional “Fun” mode was added to distract from pain and anxiety. The handcrafted stuffed animal uses force sensors in different body parts that light up from blue to red depending on how hard they are pushed to show the child’s pain level. The hope is that, as one of many future healthcare friends, Penelope can help sick children feel safer while providing more useful information to care providers.

  • Our world is mountainous with difficult terrain to traverse. The ‘Segmented Mountain Climber’ is able to deftly maneuver up and down the steep mountainsides, and over their sharp peaks. Its Whegs, half wheel half legs, are able to climb over both small rocks and large boulders. It can also quickly reverse, turn and is able to continue movement even if flipped upside down. 

    Our original idea was a mountainous world with difficult terrain to traverse. We started by brainstorming many different models that could help climb mountains. We decided on a segmented car which could work best in a mountainous situation by conforming to the landscape. It’s called ‘Segmented Mountain Climber’.

         During the first few days, we thought of various shapes for the vehicle, drawing inspiration from existing creations including roller coasters, snakes and trains. Then we brainstormed various designs for the wheels, including tank treads, legs, many small wheels, and large powered wheels.

         In order to better visualize the connections and turning of the segments, we made our first prototype of the large-wheeled model. In essence, it was just a trio of cardboard boxes tied together with string, with an axle and pair of wheels through each segment. However, some clear problems came up: the connection was not sturdy enough, and the wheels failed to rotate. We discussed at length how to incorporate the right wheels and connectors into our design. We started looking at other possible wheel choices, and then we settled on wegs. A weg is essentially a spoked wheel with the rim removed. Deriving its name from the words "wheel" and "leg," it could use circular motion, but with legs. Compared to traditional wheels, they could climb over obstructions and had superior grip. We also decided to replace the strings. At first, we had considered ball joints by virtue of their versatility, however we chose to nix the ball joints in favor of universal joints, because they could be better incorporated into the segments. Universal joints are basically two axles intersecting at a point, offering flexibility in two dimensions. Furthermore, the ability to transfer torque is exclusive to universal joints, so they could prevent any one segment from falling over. 

        Taking these considerations into account, we replaced the string and wheels on our prototype with universal joints and wegs. Upon finishing, we realized that the wegs in the prototype had the right structure but would not rotate because of the material (cardboard), the number of legs (4), and the structure of the foot. We decided that a 6-legged wooden weg would work better, and we redesigned the shape of the foot to include rubber that could provide traction. Another problem was the turning, we considered models such as rack-and-pinion, which was too delicate and complicated, and exploiting right-and-left rotation differences, which wouldn't work as well in a multi-car design such as ours. We decided on using a servo to rotate the first compartment relative to the others, turning the rest in due course. We didn't know, however, how we could incorporate the servo into the overall design. We decided that the joints would be included into the design of the car segments, and the servo would be attached to the foremost universal joint via a 3D-printed attachment. Unfortunately, a problem inherent to servos was the elimination of one of the two axes of rotation; as a result, the first and second compartments would always stay firm on uneven ground.

    Finally, after considering all these issues, we crafted the final product, learning from our previous errors. We used wood, which is much sturdier than cardboard; we used wegs, capable of scaling obstacles, and we used a servo to turn and manipulate the vehicle. We connected the motors and servo to an Arduino controlled by a remote. Overall, we had many separate design challenges; in the end, however, all the components came together to form a polished final product.

  • Our world is mountainous with difficult terrain to traverse. The ‘Segmented Mountain Climber’ is able to deftly maneuver up and down the steep mountainsides, and over their sharp peaks. Its Whegs, half wheel half legs, are able to climb over both small rocks and large boulders. It can also quickly reverse, turn and is able to continue movement even if flipped upside down. 

    Our original idea was a mountainous world with difficult terrain to traverse. We started by brainstorming many different models that could help climb mountains. We decided on a segmented car which could work best in a mountainous situation by conforming to the landscape. It’s called ‘Segmented Mountain Climber’.

         During the first few days, we thought of various shapes for the vehicle, drawing inspiration from existing creations including roller coasters, snakes and trains. Then we brainstormed various designs for the wheels, including tank treads, legs, many small wheels, and large powered wheels.

         In order to better visualize the connections and turning of the segments, we made our first prototype of the large-wheeled model. In essence, it was just a trio of cardboard boxes tied together with string, with an axle and pair of wheels through each segment. However, some clear problems came up: the connection was not sturdy enough, and the wheels failed to rotate. We discussed at length how to incorporate the right wheels and connectors into our design. We started looking at other possible wheel choices, and then we settled on wegs. A weg is essentially a spoked wheel with the rim removed. Deriving its name from the words "wheel" and "leg," it could use circular motion, but with legs. Compared to traditional wheels, they could climb over obstructions and had superior grip. We also decided to replace the strings. At first, we had considered ball joints by virtue of their versatility, however we chose to nix the ball joints in favor of universal joints, because they could be better incorporated into the segments. Universal joints are basically two axles intersecting at a point, offering flexibility in two dimensions. Furthermore, the ability to transfer torque is exclusive to universal joints, so they could prevent any one segment from falling over. 

        Taking these considerations into account, we replaced the string and wheels on our prototype with universal joints and wegs. Upon finishing, we realized that the wegs in the prototype had the right structure but would not rotate because of the material (cardboard), the number of legs (4), and the structure of the foot. We decided that a 6-legged wooden weg would work better, and we redesigned the shape of the foot to include rubber that could provide traction. Another problem was the turning, we considered models such as rack-and-pinion, which was too delicate and complicated, and exploiting right-and-left rotation differences, which wouldn't work as well in a multi-car design such as ours. We decided on using a servo to rotate the first compartment relative to the others, turning the rest in due course. We didn't know, however, how we could incorporate the servo into the overall design. We decided that the joints would be included into the design of the car segments, and the servo would be attached to the foremost universal joint via a 3D-printed attachment. Unfortunately, a problem inherent to servos was the elimination of one of the two axes of rotation; as a result, the first and second compartments would always stay firm on uneven ground.

    Finally, after considering all these issues, we crafted the final product, learning from our previous errors. We used wood, which is much sturdier than cardboard; we used wegs, capable of scaling obstacles, and we used a servo to turn and manipulate the vehicle. We connected the motors and servo to an Arduino controlled by a remote. Overall, we had many separate design challenges; in the end, however, all the components came together to form a polished final product.

  • The Project Description is  1-2 sentence project description that appears in your transcript. 

    It should be:

    1-2 Sentences (written in the third person) that clearly and objectively identifies the project and its use. Do NOT include the name of the project in the description. This should be your clearest, best and most concise writing as it will be seen by colleges, your parents, and your home school. Eventually, it will also appear under the project title for all the world to see.

    Samples:

    • A portable heated IV for extreme climate situation and/or high altitude climbers suffering from hypothermia or dehydration.
    • A sculptural device that helps users practice the slow movement associated with Tai Chi by incorporating speed sensors into lit wooden dodecahedrons and leading the practitioner through a formal sequence.    

    To edit the Description:

    • Click on the gear next to your Project Name
    • Scroll down to "Description for Transcript"
    • Enter the description
    • Click "Save"
  • next