Process

Abby Watt

This studio consisted of building many different prototypes and failing multiple times before we succeeded. Our group was the dj station and mainly focused on having a good sound system. The first prototype was an actual octopus that we would 3d print and each leg would be robotically controlled and do something different, a leg with a microphone for the karaoke machine, a disco ball that comes out of the head, etc. However, this was more creative than realistic. The design quickly changed to be an octopus inside of a box. It was inspired by the constraints of the box that our coaches provided to us. It was a box with two flaps that open and close for a top. Our design ended up being very similar to the box used for scaling in that it was a box with flaps that opened outward with two support triangles (one on each side) holding the flaps up to create a platform for an ipod/phone/ipad/computer to play the music. Inside of the box were speakers, a light, and a platform that was attached to a pulley system that would then move it up and down. On top of the platform was a disco ball and four octopus arms that had servos that would allow them to move up and down and dance to the music.

Overall, this project involved a lot of trial and error. For example, Scotty had to make a total of eight different prototypes for the octopus arms, before he was able to find the most efficient and functionable one. There also was a lot of designing in rhino, attempting at 3d printing it, finding something that doesn’t work or could work better, and then we adjusted our design in rhino and repeated the same process until satisfied.

Detail

Evan LaBelle

The Portable Party was more of an artistic piece that questioned why a party had to complicated to set up. We were inspired by a group of people who called themselves ddp. They had been trying to make a world wide dance party that could be setup in an instant. Our design is a box that can be opened with the press of a button which will start an LED, lift a disco ball, activate our “octopus arms”, and play our music. The top folded open, allowing for all of its components to activate.

There were many useful features that we were able to design. For example, the speakers could receive a radio transmission, or bluetooth so that it would be able to sync with local audio infrastructure. This allowed for it to be more usable in even the largest parties. The arms worked by a series of interlocking gear like pieces. The first gear was turned by a servo, which would result in the other joints moving as well. The final design was four arms that would wave about during the party as decorations. These were made of translucent acrylic that would bend the LED light in weird ways as it moved adding an interesting design and lighting effect. The interface of the party box could be a tablet, phone, or laptop. There is a built in stand if the dj wants to place their interface on the box, or it can be controlled remotely by a dj, or even the audience.

Final

Scott Dolgov

The Octoparty is a device that contains all parts needed for a party condensed in a plywood box. The device contains a disco ball, an LED light fixture, a stereo speaker, and specially designed octopus arms for aesthetic. The disco ball is attached to a platform inside the box and is accessible by turning a pulley that allows the ball to ascend to the top of the box. LEDs are placed below the disco ball at a slight angle allowing the light to be exposed to the disco ball. The acrylic octopus arms are bendable via a gear system, which is controlled by another pulley system that makes the arms extrude and retract in and out of the box. The pulleys are controlled by a motor called a servo, which is controlled by a small computer called an Arduino.